NRA TIM #1

Capacity Improvements Through Automated Surface Traffic Control

Brian Capozzi, Ph.D.

Presented at NASA Ames Research Center

Moffett Field, CA

May 21-23, 2002

Agenda:

- Need for Automation of Surface Control
- Meet the Metron Aviation Team
- Concept Overview and Core Ideas
- Enabling Technologies
- Roadmaps for New Technologies
- Metrics of Goodness and Costs/Benefits
- Summary and Motivation for Getting There

The Need for Surface **Automation...**

Surface Constrains NAS Throughput

1977 Tenerife...

• Visibility Problems

Situation Awareness

Metron Aviation Team of Topical Experts

Brian Capozzi, Ph.D.
Metron Aviation
Path Optimization
Autonomous Systems
Algorithm Design

Chris Brinton
Metron Aviation
Surface Automation
Decision Support Tools
Software Development

Bruce Ware
Metron Aviation
Ops Expertise
Statistical Analysis
ATSP Experience

Prof. Phil Smith
Cognitive Systems
Human Factors
Roles, Responsibilities, &
Procedures

Concept Overview

Human-Centered Design Philosophy

May 21-23, 2002

cockpit displays

NRA TIM #1

Roles and Responsibilities

Technical Aspects

Constraints on Solution

May 21-23, 2002

NRA TIM #1

Example Operational Concepts

Enabling Technologies

Weather and User Response Prediction

May 21-23, 2002

NRA TIM #1 10 Microburst prediction Storm Location & Motion Terminal Winds

Weather Sensing and Prediction will mosaic the NAS by 2010

METRON AVIATION

Roadmaps for New Technologies: Evolution

Roadmap for Surface Automation: Evolution

Ground/Ramp controller role shift, Pilot role shift

Use of Advances in Display Technology

Metrics of Goodness

Metric	Category	Description
Capacity	Airport Arrival Rate Airport Departure Rate	Maximum number of arrivals (typically per hour) as measured by wheels "on" time upon landing Maximum number of departures per hour as measured by wheels "off" time
	End-to-End Throughput	Maximum number of arrival-to-departure events per hour (including gate turn time)
Predictability	Airport Time of Arrival (Departure) Prediction	Error in wheels on time (off time) as a function of prediction horizon time
Efficiency	Direct Operating Cost (DOC)	A metric determined by a combination of time and fuel
	Taxi-in time Taxi-out time	Measured from touchdown to brakes applied at gate Measured from brake release to either wheels "off" time or radar target recognition (ACARS message)
	Average Queuing Time	Average amount of time spent in queues from pushback to start of departure roll

Metrics of Goodness

Metric	Category	Description
Environment	Noise Pollution	Average annual noise exposure (DNL) Annual emissions of fuel-burn products
Safety	Conflict Alerts	Trajectory deviations due to Conflict Detection
	Runway Incursions	Incidents on the airport surface due to controller error or lack of pilot situational awareness
	Blunder recognition time	The time required for the controller to become aware of pilot errors in following clearances
Flexibility	User Preference	Accommodation of user preferences measured in terms of surface trajectory interruptions due to aircraft conflicts
	Slot Swapping	Total number of slots exchanged in surface path plans
	Block Swapping	Exchange occurring across windows or blocks of time (0-15min, 15-30min, etc.)
Equity	Delay Deviation	Measure of Delay Deviation amongst Users and User Categories

Metrics of Goodness – Cost/Benefits

- - FACET
 - Simulation-Based
 - Cognitive Walkthroughs
- Analysis
 - Historical, 2000, 2010, 2015, 2020
 - Scenario-Based
 - Iterative Improvement on **Capacity Improving Concepts**

Summary and Motivation

- Surface Automation is a Logical First Step to ATC Automation
- A Shift in Roles and Responsibilities of ATSP/FD is needed
- Our Concept requires no new equipment in the cockpit
- A revolutionary solution with an evolutionary implementation
- The Demonstrations will follow

